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Abstract

This paper unifies the development of the cutting plane algorithm for

mathematical programs and variational inequalities by providing one

common framework for establishing convergence. Strategies for generating

cuts are provided for cases in which the algorithm yields easy and difficult

subproblems. When the subproblem is easy to solve, a line search is added

and a deep cut is selected to accelerate the algorithm. On the other hand,

when the subproblem is difficu't to solve, the problem is only solved

approximately during the early iterations. This corresponds to generating

cuts which are nontangential to the underlying objective function. Moreover,

in the case of variational inequalities, it is shown further that the subproblem

can be eliminated entirely from the algorithmic steps, thereby making the

resulting algorithm especially advantageous,
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I. INTRODUCTION

Many have studied the cutting plane approach for mathematical

programs for some time. Cheney and Goldstein (1959) and Kelly (1960) first

proposed it for convex programs. Dantzig-Wolfe (1960) (see also Dantzig,

1963) proposed the dual equivalent called generalized linear programming or

column generation. Zangwill (1969) provided new viewpoints and supplied

a convergence proof based on algorithmic maps. MIagnanti et al. (1976)

showed that generalized linear programming solves Lagrangian dual

problems even when standard convexity assumptions do not hold. As a

standard technique, the cutting plane approach often appears in texts such as

Bazaraa and Shetty (1979).

For variational inequalities, references on the cutting plane approach are

considerably less. Zuhovickii et al. (1969) (see also Auslender, 1976) were the

first to apply it to variational inequalities. Nguyen and Dupuis (1984)

proposed an acceleration idea and prove convergence using Zangwill's

algorithmic maps.

It is well known (see, e.g., Auslender, 1976, Hearn et al., 1984 and Nguyen

and Dupuis, 1984) that mathematical programs (MPs) and variational

inequalities (VIs) are related and possess many similar properties. In fact,

many algorithms for VI problems are based on MP algorithms (see, Harker

and Pang, 1990), In spite of this relationship, the developments of the cutting

plane algorithm appear different for these two areas. However, one can unify

the developments by addressing MPs and VIs in a common framework. In

this paper, we provide one such framework with which tite cutting plane

algorithm can be derived for both MPs and VIs. This framework is then used
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to analyze existing schemes for accelerating the cutting plane algorithm. The

analysis results in a common argument for proving convergence for all

acceleration schemes regardless of the underlying problems and points out

when each scheme might be effective.

For MPs, this paper focuses on problems derived from Benders

decomposition and Lagrangian duality. For VIs, the paper considers those

with finite dimension, In Section 2, it is shown that these problems can be

stated as the following maximin problem:

7v max min {f(x) + ug(x)}
uEU xEX

where U and X are nonempty and convex subsets of Rm and Rn, respectively,

f(x) is a continuous real-valued function define on X, g(x) is a continuous

vector-valued function mapping Rn into Rm, and w* is the maximin value for

the problem. For convenience, ug(x) denotes the dot product of vectors u and

g(x). The basic cutting plane algorithm is stated in Section 3 with a

convergence proof. Section 4 utilizes the framework given in SeLtion 3 to

analyze existing strategies for accelerating the algorithm., Finally, Section 5

concludes the paper.
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2. INSTANCES OF MAXIMIN OPTIMIZATION

The first two instances of the maxinwin problem were first observed in

Magnanti and Wong (1981) and they are stated here for completeness. The last

instance can be found in a slightly dtifferent form in Hearn et al. (1984) and

Nguyen and Dupuis (1984).

First, consider the following nonlinear program (NLP)

min f(x)

s.t. g(x) < 0

xEX

where f(x), g(x), and X are as previously defined with the exception that X is

additionally assumed to be compact. Then, the Lagrangian dual problem of

the NLP can be stated as

max min {f(x) + ug(x)}
u 0 xEX

where u now represents the du,! vector for the constraints defined by g(x).

This shows that Lagrangian duality leads to the desired maximin problem.,

When f(x) = cx, g(x) = b-Ax, and X = {x, Dx > d, x 2 0). The above NLP

reduces to the following linear program (LP):

min cx

s.t. Ax>b

Dx>d

x >0,

and the Lagrangian dual of this LP is

max min {cx + u(b - Ax)},
u _O xE3



Letting f(x) = cx and g(x) = b-Ax yields the desired maximin problem.

However. an equivalent method of obtaining the Lagrangian dual of the LP is

by applying Benders decomposition to the dual of the LP which can be stated

as

max ub+vd

s.t. uA+vD5c

u,v > 0.

Partitioning the decision variables (u,v) gives

maxmax {ub+vd: vD<_c - uA}.
u O v O

By dualizing the inner maximization, the above maximin problem can be

written as

max min {ub+(c - uA)x}, or
u O xEX

max min {cx + u(b- Ax)}.

UZ EX

The last maximin problem is the same as the one obtained with Lagrangian

duality.

Our last instance of a maximin problem is a variational inequality (VI)

problem which can be stated as follows: find a vector x* E S s uch that

F(x*)(u. x*)20 Vu ES

where S is a nonempty, convex and compact subset of Rn and F(x) is a vector

function mapping Rn into Rn. When F(x) is strongly monotone on S, i.e., 3 a >

0 such that

(F(x) - F(u))(x - u) a Ix- uI 12 V x, u E S,

4



then the VI problem can be stated as [see H:'arn et al. (1984) and Nguyen and

Dupuis (1984)]

max min {F(x)(x - u)}, or max min {F(x)x - uF(x)}.
uES xCS uES XS

Letting f(x) = F(x)x and g(x) = -F(x) again yields the desired maximin problem.

5



3. THE CUTTING PLANE ALGORITHM

In the basic cutting plane algorithm, the optimal value of the inner

minimization of the maximin problem at a given point u is denoted as L(u),

i.e.,

[SI: L(u) - min{f(x) + ug(x)}
xeX

Since L(u) is defined as the pointwise minimum of a set of functions linear in

u, L(u) must be concave.. To motivate the algorithm, the maximin problem is

restated as

[P]: w* =max I

s.t. w <f(x') + ug(x) Vxj E X

u E U and w is unrestricted.

Problem [P] has an infinite number of constraints of the form

w <f(x') + ug(x')

which are generally referred to as cutting planes or simply cuts. To avoid

generating all the cuts apriori, the algorithm initially solves an approximation

of problem [P] which contains only a few cuts and obtain, say (w',u'), as a

solution. To further refine the approximation and hence obtain a more

accurate solution, problem [S] is solved with u = u' to produce a solution x'

which defines a new cut

w <f(x') + ug(x').



The approximation of problem [P] is updated and resolved with the addition

of this new cut. Then, the process is repeated until an optimal solution is

found. Below we formally state the algorithm for the maximin problem.

The Cutting Plane (CP) Algorithm

Step 0: Find a point x° E X. Set k = 1 and go to Step 1.

Step 1: Solve the (kth ) master problem

max w

s.t. w < f(xi) + ug(xi) i = 0, ..., k-1

U E U and w unrestricted.

Let (wk, Ilk) denote an optimal solution and go to Step 2.

Step 2: Solve the (kth ) subproblem

xk .argmin{f(x) + ukg(x)}
-X E

and L(u k) - ~k) +1 ukg(x k).

Step 3: If wk = L(uk), then (uk, xk) solves the maximin problem..

Otherwise (i.e., wzk > L(ut)), replace k by k+1 and go to Step 1.,

In Step 1, the dual of the kth master problem is the following linear pro-

gram
k-1

min E r f(x')
1-0
k-1

s.t. I r, g(x') 0
1=0

k 1
7r =1

1=0
2r _ 0 V i 0 ,...,(k - 1)



The CP algorithm with the master problem replaced by its dual as stated

above is generally known as Dantzig-Wolfe decomposition, column genera-

tion, or generalized linear programming.
In both Benders decomposition and Lagrangian dual of an NLP, the set X

is either constructed or chosen to facilitate the solving of the subproblem in

Step 2 or, equivalently, problem [S]. In many cases, a closed form solution or

efficient algorithm exists for the subproblem. However, such is not the case

for VIs. The choice for X is restricted to be S, the feasible region of the VI

problem. Moreover, the objective function of the subproblem contains the

term F(x)x which is at least quadratic, unless F(x) is a constant vector.,

Therefore, the subproblem, or problem [S], does not generally admit an easy

solution and the CP algorithm as stated above would be inefficient, if not

ineffective, for VIs., In Section 4, a technique to overcome this difficulty is

discussed,

Step 3 uses the fact that wa > L(uk) which is generally known to follow from

Lagrangian duality., However, the inequality can also be obtained by noting

that xi E X for all j and

L(uk) minff(x)* ukg(x)} < minfAxl) + ukg(x9):O j -k -1= wk.
XEX I

So, regardless of howf(x) and g(x) are derived, the inequality holds.

The following two lemmas are essential for the convergence of the CP

algorithm. The proofs of both lemmas are similar to those in Dantzig (1963)

and Magnanti et al. (1976) with the exception that all references to Lagrangian

duality are eliminated. However, they are stated here for completeness and

further reference.
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Lemma 1: At each iteration of the CP algorithm

(i) wk7 > wk V k

(ii) wk> w* V k

(iii) If L(uk) > Wk, then w* = L(uk) = wk.

Proof: The first result follows from the fact that the kth master problem has

more cuts than the (k-l)st. The second follows from the fact that the master

problem in Step 1 contains only a finite subset of cuts in problem [P].

If L(uk) > Wk, we have

Z? * <- W k

- L(,, k ) = min{f(x) + 11kg(x)}
xEX

maxminif(x) + ug(x)} =w
uEU x EX

where the first inequality follows from (ii), the second is given in (iii), and the

last inequality is because of the maximization over the set U. The above series

of inequalities implies that (iii) holds. 7.

Lemma 2: If X is compact and there exists a subset K {1, 2, ...) such that the

subsequence {u(k}kc K is convergent, say to the limit point, u, then

limlk = w *  L(I*).
kEK

Proof: Since (wk, uk) solves the kth master problem and the fact that constraints

in the jth master problem, with j < k, are always contained in the problem at

iteration k, we have that

f(x') +ukg(xJ) 2 711k >- foi/=O,1,...,(k 1) (1)

where the last inequality follows from Lemma 1. Let

9



WO=limW k'k EK

Note that w- exists because (w%~ is a monotonically decreasing sequence

which is bounded below by 7V * Taking the limit in equation (1) for k E K, we

obtain

f( X )+ti'g(x)w'2:w* forj=O,1,2,3,.. (2)

By assumption, g(x) is continuous and X is compact. There must exist a posi-

tive real number P3 such that I g(x)j 3 for all x E X, Then,

jf k-) + 1,kg (Xk) ,f(X) =1g( k) Uk.I-g X~: l II_ (3)

Consequently, for any given e 0, there is a k, E K such that for all k E K and

k kj, the last term in (3) is bounded by e, Therefore,

[f (Xk) + llkgfxk) f fXk) .. 10g(X k) £

or E f(xk) + ukgxk) .f(xk - u g(Xl) *C'

Examining the right inequality, we obtain

L~)f (Xk) + ikg(Xk) f(xk) + 11 g(Xk) .

or L(uk + 2! f,,xk) + u'9g xk

From (2) and the definitiorn of 70,

* +E 2! L (itk) + E> f ( xk) + ii'g ( Xk) 7 0 >' W*.

Since E is arbitrary, we can conclude that

10



w* = limL(uk) = L limuk) = limw k

kEK IkEK kEK

where the middle equdlity follows from the continuity of L(u). C]

To obtain a solution to the maximin problem, evaluate the function L(u)

at uo to produce xm ,i.e.,

x* = argmin{f(x) + u-g(x)}.

xCX

Then, it follows from Lemma 2 that (xmut) solves the maximin problem.

We now obtain convergence for the three instances of maximin problems.

For Benders decomposition of an LP, the second condition in Lemma 1 will

hold after a finite number of iterations because the set X is assumed to be

compact and can be expressed as a convex combination of a finite number of

extreme points [see, e.g., Bazaraa et al., (1990)], For VI problems, both U and X

are the same as S which is compact, Since Ilk E S for all k, {lk} k must contain a

convergent subsequence, thereby satisfying the hypothesis of Lemma 2., So,

the CP algorithm converges for VIs. The convergence for the Lagrangian dual

of an NLP follows from the theorem below.,

Theorem 3: If there exists an x° E X such that g(x ° ) < 0 then there is a

converging subsequence of (lklk'

Proof: See Fisher and Shapiro (1974).

This theorem also points out that the selection of the initial solution x1 in

Step 0 of the CP algorithm is critical for the Lagrangian dual case, for it deter-

mines the convergence of the algorithm., Magnanti et al., (1976) provides a

procedure to obtain an initial solution satisfying the condition in Theorem 3 if

11



one is not readily available. This procedure is akin to phase one of the two

phase method in LP.

12



4. STRATEGIES FOR GENERATING CUTS

The two main steps in the CP algorithm consist of solving the master

problem and generating a new cut. In this section, we examine existing

schemes for generating new cuts.

Solving the subproblem in Step 2 of the CP algorithm is one method of

generating new cuts., However, it does not distinguish between easy and

difficult subproblems. When the subproblem is easy to solve, it would be

advantageous to solve more subproblems in a effort to obtain better cuts, i.e.,

those which may lead to a reduction in the number of master problems to be

solved., On the other hand, when the subproblem is difficult to solve, it may

be better to cheaply obtain a legitimate cut, perhaps not necessarily tangential

to L(u). The two subsections below discuss these two schemes in detail.

4.1: Easy Subproblems

Hearn 3nd Lawphongpanich (1989a) viewed the difference of two

successive iteriates of the CP algorithm as a direction, i.e., d = Ik-iuk- 1. They

showed that, when L(u) is differentiable at ukl, d is an ascent direction ,

Otherwise, the nondifferentiability at ik-1 implies that the subproblem at the

(k-l)st iteration has multiple solutions and the ascent property would depend

on the choice of xk 'l, In any case, this observation suggests the inclusion of a

line search step, Below is one version of the CP algorithm with line search.

13



The Cutting Plane Algorithm with Line Search (CPLS)

Step 0: Find a point x ° E X. Let v° = 0 and k = 1. Go to Step 1.

Step 1: same as before.

Step 2: same as before.

Step 3: If wk = L(uk ), then (xk, Ik) solves the maximin problem. Otherwise (i.e.,

wk > L(uk)), set dk = Ilk-vk-1.

(i) If k = 1; set vk = Ilk and k = k+l. Go to Step 1.

(ii) Otherwise (k > 1), let

tmax = arg max {L(vk - 1 + tdk):O 5 t < tup)

where tu v is the maximum value of t for which vk- 1 + tdk remains
feasible to U. If tmax < 1, then pick any nonzero tk E [tmax,l].
Otherwise, let tk E [1,tmax].: Set vk = vk- 1 + tkdk and solve the
(sub)probl em

yk . argminff(x) + vkg(v)}.
xEX

If yk is not unique, select yk E X(Vk) so that

f(yk) + ikg(yk) f(yk) + vkg(yk) L(vk) (4)

Set xk = yk and k = k+1., Go to Step 1.

Note that CPLS produces two sets of dual iterates, uk and vk, where uk

denotes the solution of the master problem and vk is a point along the

direction dk = uk - vI-1. Moreover, the cuts are generated at vk instead of uk.

In Step 3(ii), the choice of step length, tk, in the direction dk is inexact to

allow for inaccuracy in the line search and for heuristic selection of a new cut.

14



However, setting tk = tmax places vk at the maximum point and tk = 1 places vk

at uk which reduces CPLS to the basic CP algorithm,

For any allowable choice of tk, the resulting vk is feasible to the master

problem and we have the following relationship

L(Uk) < L(vk) mint f(x) + vkg(xi): i = 0,...,(k-1)} w k

If L(Vk) = wk, then CPLS would discover that (xk, vk) is optimal in the next

iteration. Otherwise (i.e., L(Vk) < wk), adding the cut

w < f(xk) + ug(xk)

makes the point (wk,uk) infeasible to the next master problem thereby Pnsuring

that the sequence wk decreases monotonically,

To establish convergence for CPLS, it is assumed that either U is compact

or L(u) satisfies the following condition

[A]: lim L(u + td)= -
t - Go

for all u E U and for all of its direction of recession, d ; 0 (see page 61 of

Rockafellar, 1970). Among the three instances of maximin problems, U is

compact for VI problems because U = S and S is compact by the standing

assumption in Section 2. For optimization problems, U = {, 0 i = 1, . . ., m)

implies that every component of its direction of recession must be

nonnegative. Then, the requirement (in Theorem 3) that there exists an x0 E X

such that g(x° ) < 0 further implies that condition [A] holds. To verify this,

note that for any u E U and any direction of recession d * 0

L(u + td) = min {f(x) + (i + td)g(x)) f(x ° ) + ug(x *) + tdg(x a).
XEX

Since d 2 0 and g(x °) < 0, dg(x0 ) < 0 and taking the limit as t approaches - gives

15



lim L(u + td) <. f(x*) + ug(x*) + lim tdg(x*)= oo.
t - 00 t-*o

Under the assumption that either U is compact or condition [A4 holds, the

value, for tma x in Step 3 of CPLS must be bounded. This in turn implies that vk

is also bounded whenever uk is bounded because

IVk I" I k . U4k itkj < IV . UkI + luk < max~, tmax }+1 uk .

Then, the convergence of CPLS follows from the lemma below.

Lemma 4: If X is compact and there exists an index set K (1, 2, ...) such that

the subsequence {uk4EK converges to u00 then there exists a subset

K' C K such that {Vk)kcK' converges to v* and

lim wo= w*= L(v = )

kEK"

Proof: Using the same argument as in Lemma 2, it can be shown that

f(xJ) + ,,og(xj) _ wO _ w* Vj = 0,1,2,... (5)

and f (xk) + llkg(xk) f(xk) + U-'g(xk) _-E

Using inequality (4) in Step 3(ii), the right expression is bounded above as

follows.,

L(v') = f(xk) + ,kg(xk) > f(xk) + ,kg(x) .f f(xk) . 1'g(xk). e

or L(vk) + E f(xk) + ukg(xk) ?! f(xk) + u*g(xk).

From (5), we have

u* +E 2! L (Vk) + E f(Xk) + ikg(Xk) _Ax k) + ug(x1) 2! zwo _> 7V

16



k
Since {uk kEK converges, u must be bounded for all k E K. It follows from

the preceding discussion that vk for all k E K must be bounded as well. Thus,

there must exist a subset K' 9 K such that the subsequence {Vk kEK ' converges

to voo. So, taking the limit of the above inequalities with respect to k E K', we

have

w* +e > limL(vk) + e 2 L limvk]+e w*,
kEK' "k EK'

Since e is arbitrary, w* = L(v-).

Given Lemma 4, obtaining the x component for the maximin solution

corresponding to v and establishing the convergence of the three instances

are the same as in the basic CP algorithm.

At the end of Step 3(ii), xk originally defined in Step 2 is replaced with yk.,

So, yk now defines a new cut for the (k+l)ot master problem. Moreover, yk is

not arbitrarily selected when alternate optima exist. In fact, Step 3 requires

that yk satisfies inequality (4) and the theorem below ensures that such yk

exists,

Theorem 5: In Step 3 of CPLS, there exists a yk which solves

L(v k )=min[f(x) + vkg(x)]
xEX

and satisfies

/(yk) + ukg(yk) :- f(yl) + vkg(yk) = L(vk)

where uk is part of the solution, (wk,uk), to the kth master problem.
>1 eoemax =k-i k k max

Proof: Assume that tmax > 1, Denotev - + tmad, Then, v = v +

(1-03) uk for some 0 E (0,1) and by concavity of L(u)

17



Lk ) > P L(v m ax ) + (1-P) u k)  k L(uk).

Let X(v k) denote the (compact) set of solutions to the subproblem. To obtain a

contradiction, assume that

fix) + uk g(x) >f(x) + vk g(x) for all x E X(v k)

Then

(uk - vk ) g(x) > 0 for all x E X(v k)

which implies that
k k kmin { (u -v ) g(x) ':x EX(v )} > 0

k k kThus, the directional derivative of L(v) at v in the direction (u - v ) is
k k k.

positive, i.e., (uk - vk ) is an ascent direction. However, v is a point on the line
max kk

connecting v to u and, by the concavity of L(u), moving toward u must

k k
decrease its value., This contradicts the statement that (uk - v ) is an ascent

direction., (The case for tma, _< 1 is proved similarly.) 0

Figure 1 illustrates cuts which satisfy or are 'allov% ed' by inequality (4). In

this case, there are an infinite number of allowable cuts and any of them

would make CPLS converges.,

As in Magnanti and Wong (1981), we say that the cut, w <f(x')+ug(x'),

dominates or is stronger than the cut, w < f(x") + ug(x") if

f(x') + ug(x') - f(x") + ug(x") Vu E U

with a strict inequality for at least one u. We call a cut pareto optimal if no

cut dominates it., Since a cut is determined by x E X, we also say that x'

dominates x" (or x' is stronger than x") if the associated cut is stronger, and we

say that x is pareto optimal if the corresponding cut is pareto optimal.

18



It is interesting to note that every allowable cut in Figure 1 is pareto

optimal. However, this is not always true. In general, there are allowable cuts

which are dominated. Theorem 6 shows how to modify Step 3(ii) of CPLS to

generate a pareto optimal cut.

previous cuts

an allowable cut

VkI, k k

Figure 1. Allowable Cuts for Step 3 of CPLS
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Theorem 6: Let X(vk) denote the solution set of the following (sub)problem.

minf(x) + vkg(x)}.
xEX

If yk uniquely solves

min {f(x) + uk g(x)},
X EX (V)

then yk is pareto optimal.

Proof: Assume the contrary that yk is not pareto optimal, i.e., there exists an

x E X andx~yksuch that

f(x) + ug(x) f(yk) + ug(yk) V11 E U. (6)

In particular, setting it = v in (6) we obtain

f(X) + ,k g(x) f(Y ) + ,kg(yk)., (7)

Since yk E X(vk),

f(Yk) + ,k g(yk) _ f(x) ) kg(x). (8)

Combining (7) and (8) produces the following equality

f (yk) +) kg(yk) = f(x) + vkg(x)

that is, x E X(Vk), However, setting u = i k in (6) gives

fAX) + it k g(x) f(yk) + it kg(yk).

Since x * yk and yk uniquely solves the 2nd minimization problem, this last

inequality is a contradiction. E

20



If uk in Theorem 6 is in the relative interior of U, the uniqueness

assumption for yk can be dropped and the pareto optimality follows from

Theorem 1 in Magnanti and Wong (1981). The following theorem shows that

yk in Theorem 6 defines an allowable cut.,

Theorem 7: Let yk be as defined in Theorem 6. Then

f(yk) + jikg(yk) _f(yk) + Vkg(,yk)

Proof: Assume the contrary that

f(yk) + ukg(yk) >f(yk) + vkg(yk).

Using the definition of yk, we have that

min {f(Y) +uik g(y)} > f(yk) +Z)k g(yk)

min {f(y) + itkg(y)}- f(yk) .vkg(yk) > 0.
YEX(VL)0

Since f(yk) + vkg(yk) = L(vk) = fly) + zkg(y) for all y E X(vk),

min {) + 11kgy). f ._Vk g(y)} > 0.
YEX ( vk

min 411,k -vk)g(y)} > 0.
yEX ( Vk)

The expression on the left side is the directional derivative of L(vk) in the

direction (uk-vk), and the inequality implies that uk-Zvk is an ascent direction

which is impossible for our choice of step size tk. To see this, assume that tk E

[tmax,1]. This implies that vk Is on line joining vma and Ilk, where vm " = vk-2 +
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tmax (uk-Vk) maximizes L(u) in the direction (uk-vk). So, moving away from vk

toward uk can only decrease the function value, i.e., uk-vk cannot be an ascent

direction at vk. The argument is the same for tk E [1,tmax]. C]

Theorems 6 and 7 demonstrate that it is possible to select an allowable cut

which is also pareto optimal. Magnanti and Wong (1981) showed that pareto

optimal cuts can accelerate the convergence of the cutting plane algorithm,

particularly for Benders decomposition. Selecting an allowable cut or a

pareto optimal yk would require considerable effort in general. Hearn and

Lawphongpanich (1989a & b) described a heuristic method for selecting an

allowable cut., The method consists of the following two rules:

i) If tmax > 1, set tk = tmax -c, and

ii) If tmax < 1, set tk = tmax +

where e is a small positive number. Figure 2 illustrates how these rules select

a cut. The function L(,i) is nondifferentiable at Vizax and t,,:ax < 1 in Figures

2(a) and (b). So, letting tk = tiax + E would set vk to the right of vi,,ax by an e

amount. However, at vk the function L(u) is differentiable and the the cut

generated here is the line tangential to L(u).. In Figure 2(a), this E-purturbation

rule chooses the only nondominated cut. In 2(b), there are an infinite number

of nondominated cuts and all of which are convex combinations of the two

'extreme' cuts. In this case, the rule selects one of the extreme cuts,
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previous cuts

L9u)

- \

," allowable cuts

the pareto optimal cut

L(u) feasible
k region

Fk

(a)

previous
CUtS

L ,) - -. two extreme

t- \s

the chosen

Vk

ZI. I lk
tma'ilx iik\

(b)

Figure 2. A Heuristic Section of Allowable Cut
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4.2 Difficult Subproblems

In this situation, one alternative is to solve the subproblem only approxi-

mately while ensuring that effective cuts are still being generated. In

Lagrangian relaxation or subgradient optimization (see, e.g., Fisher, 1981 and

Polyak, 1969), the optimal objective function value is used to define the step

length calculation which guarantees convergence. For the CP algorithm, the

maximin value, w*, analogously defines how close the approximation need to

be in order to generate an effective cut. In general, the value w* is unknown at

the start of the algorithm and must be estimated to make the resulting

algorithm effective. However, w* = 0 for VI problems (see, e.g., Zuhovickii et

al.. 1969 and Auslender 1976). This allows an approximate subproblem

solution to be easily obtained.

Below, we state a version of the basic CP algorithm which solve the sub-

problem approximately., The name 'nontangential' is due to the fact that, by

approximately solving the subproblem, the generated cuts are not necessarily

tangential to L(u).

The Nontangential Cutting Plane Algorithm (NTCP)

Step 0: same as before.

Step 1: same as before,

Step 2: If wk = w*, then there exists an optimal solution (wk,uk) such that

L(uk) = w*. Otherwise (i.e., w* < wk), select xk E X such that

f(xk) + ukg(xk) < w*, (9)

Set k =k+1 and go to Step 1,
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Note that xk in Step 2 need not be an optimal solution to the subproblem. In

fact, the (subproblem) objective function value at xk only need to be

sufficiently small, i.e., no larger than w*. This insures that (wk,uk) is infeasible

to the (k+lst master problem because

f(xk) + ukg(xk) S w* <wk.

From this inequality, it can be concluded that wk is still a monotonically

decreasing sequence. However, because xk does not necessarily solve the sub-

problem, the cut: f(xk) + zikg(xk) is not necessarily tangent to L(u) at uk (see

Figure 3). Nevertheless, the following results show that NTCP can still

converges to the desired solution.

previous
w cuts

// /

\/

N /a \ a
,. / nontangential

W*N 
cutat uk

(x ) u g(x )

UUk W

Figure 3. An Example of a Nontangential Cut
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Theorem 8: If wk = w*, then there exists an optimal solution the the master

kk,
problem, (w k,uk), such that L(Uk) = w*. That is, (x ,u solves the

maximin problem, where

xk = min 1f(x)+ukg(x).
x EX

Proof: Assume that the theorem is not true. Then, for every pair (wk,uk) which

is optimal to the kth master problem, the following must hold

L(uk) <minIf(x)+1kg(x3):i 0,...,(k- 1)1 Wk . (10)

However, for any pair (w,u) feasible, but nonoptimal, to the kth master prob-

lem, the following also holds

L(u) min{f(x') + ig(x'):i - 0,..., (k -1)} w ( w<k w  (11)

Combining (10) and (11), we get

L(u)<w* for allu E U

or max L(u) < w.
u EU

This is a contradiction since w* is the maximin value. E

Lemma 9: Assume that NTCP generates an infinite sequence (uk), If X is com-

pact and there exists a subset K ; {1, 2,... ) such that the subse-

quence (uk}kEK is convergent, say to the limit point, u, then

w0 = limwk
kEK

Proof: Using the same argument as in Lemma 2, it can be shown that for k

sufficiently large and k E K
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w* 5 w < f(xk) + u1'g(xk) <f(xk) + ukg(xk) + e. (12)

However, by the choice of xk in Step 2 of NTCP

f(xk) + ukg(xk) - w* (13)

Combining (12) and (13) yields the following

w* w" f(xk) + uwg(xk) :f(xk) + ukg(xk) + E 5 w* + e. (14)

Since e is arbitrary, we can conclude that

w* = limw k
kEK

To address the convergence of (uk )K to u, where

w inmin {f(x)+ u * g(x)},

xEX

define the following

i) X- = , }

ii) [X ] ] the closure of X

iii) Lk(u) min {f(xi)+ug(xi)}
iE{ 0,1..... (k. 1)

iv) L(u) = min {f(x)+ug(x)}
X E I~ V

From (iii) and (iv), it is clear that

L(u) < Lk+1(u) 5 L(u) V UE U,

and it can be shown that

lim Lk (ti) = LO(u) Vu E U.
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In other words, {L(uk)} is a monoto'nic sequence of functions which converges

pointwise to L(u). Furthermore, note that

uk = argmax Lk(u).
U EU

If the subsequence {ukK converges to u'", then it follows frotm Theorem 3.7 of

Wets (1983) [see also the results in Wets, 1980] that

U - arg max L*(u),
U EU

and (14) also implies that

I0 = L"(u") = lim wk
kEK

Lemma 10: Under the same assumptions as in Lemma 9, u* solves the

following problem:
max L"(u).
U EU

Proof: Note that

w* =min{f(x)+u*g(x)} _ min {f(x)+u*g(x)}
xEX x E[ x"]

min {f(x' ) + u* g(xi)}
i E{ 0,1,..., (k. 1)}

:W
k

where the first inequality follows from the fact that [X*] is a subset of X, the

second from the fact that (0,1,2,...,(k-1)) is a subset of [X*], and the last from the

fact that u* does not necessarily solve the kth master problem.,

The above sequence of inequalities can be summarized as follows

w* < Lw(u*) < wk,.1

By taking the limit as k -- , k E K , and invoking Lemma 9, we have that
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L(u*) = w* = max L**(u)
uEU

and the proof is complete.j

An immediate consequence of Lemma 10 is that if the problem

max L*(u)

U EU

admits a unique solution, then (tk)K must ccnverge to u. Given Lemma 9 and

10, the convergence of NTCP for the three instances of maximin problem can

be established as in the case of the basic CP algorithm except for Benders

decomposition. To insure that the NTCP algorithm for Benders

decomposition converges finitely, the xk chosen in Step 2 of NTCP must also

be an extreme point of the region X.

It is interesting to specialize NTCP to VI problems. Because of the

structure of VIs, the task of selecting an xk in Step 2 is much easier and the

stopping rule and the convergence result can both be strengthened. Recall

that the maximin problem for VIs takes the following form

w* = max min {F(x)x - F( )u}
uES xES

where S is nonempty, convex and compact subset of R" and F(x) is a vector

valued function mapping R" into Rn.Moreover, F(x) is further assumed to be

strongly monotone which implies that there is a unique solution, u, to the VI

problem, i.e.,

F(u*)(x . u*) .0 Vx ES.

Below, we state the version of NTCP algorithm for VIs.
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The Cutting Plane Algorithm for Variational Inequalities (CPVI)

Step 0: Letx ° E S. Set k = 1 and go to Step 1.

Step 1: Solve the (kth) master problem

max w

s.t. w < F(xi)XL F(xi)u i = 0, ..., (k-1)

u E S

Let (wk,uk) be an optimal solution and go to Step 2.

Step 2: If wk = 0, stop and xi for some i E (0, ..., (k-1)} is a solution.. Otherwise,

select Xk E S such that

F(xk)(xk - Ilk) < 0.

Set k = k+1 and go to Step 1.

The stopping rule in Step 2 follows from the fact that w* = 0 for VI

problems (see, e.g., Zuhovickii et al. 1969 and Auslender 1976). Theorem 11

and 12 below describe how to obtain the solution to the VI when CPVI

terminates finitely and when it generates an infinite sequence, respectively.

Theorem 11: If wk = 0 and F(XJ)(X'-Ilk) = 0, then x solves the VI problem.,

Proof: Under the strong monotonicity assumption, the solution to the VI

problem must be unique (see, e.g., Auslender (1976) and Hearn et al. (1984)].

Thus, there must be only one x1 such that

0 = wk = F(x') (XI -uk)

and for i j

0 = Wk < F(x i) (X i- Ilk).,
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Then, the kth master problem can be reduced to a problem with only one cut,

i.e.,

O=wk=max W

U E S,

or 0 =Z)k "max F x](x] . u).

However,

0 = max F( u(ji) F(xj)(xJ - it) V I E S
u ES

Multiply through by -i to obtain

F~xj(it xJ) 0VitE S,

That is, xi solves the VI problem.

Theorem 12: The solution to the VI problem, it*, is a limnit point of the set [ X"I.

Proof: For each k, let i(k) denote an index of an active cut for the k th master

problem, i.e., i(k) satisfies

Zk = r(xI(k))x:(k) .F(x *)uI.

Then, we have

cIxO) - *12 --' (F(xi(k)) -F(u*))(xi(k) . I,)

F(x (k)(xgk - *) -F(tt*)(x (k) I*

F(xi(k))(xi(k) .u*)

The first inequality follows from the definition of strong monotonicity a;td the

second from the fact that 0~ solv~es the VI problem, i.e.,
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F(ill)(x . u*) 2 0 Vx ES.

Since S is compact, there must exist a subset K {0, 1, 2,. . . I satisfying the

condition in Lemma 9, thereby having the property that

0 = w*- lim wk
kEK

Thus, from the above sequence of inequalities, it must be true that

lim xi(k ) .it -0 or limx i(k) u *.

kEK I kEK

From the above theorem, there exists a subsequence of active cuts, {x (k)} ,

converging to u. Alternately, Lemma 10 also implies that the sequence {uk}

also converges to u when it 'strongly' solves the VI problem (see Figure 4),

i.e.,

F(z, )(x- *)>0 VxES & x*u*.

In this case, thc problem: max{Lo*(u) : u E S ) admits a unique solution., To

verify this, assume that u' 0 zi* is an alternate solution to the problem. Then

LO(u') - min {F(x)(x - u')} F(u*Xu* u') < 0,
x El X- I

where the first inequality follows from the fact that u* E [ X0*] and ;.he second

from the fact that u 'strongly' solves the VI problem., However, from Lemma

10, u also solves max{L*(tt) :, u E S I and LO(u*) = w* = 0. Thus, the above

inequalities is a contradiction since L'*(I*) - L *(u' = 0. Therefore, when u*

'strongly' solves the VI problem, the entire sequence { uk} must converge to u*,

since every convergent subsequence of {u k must converge to a solution of the

problem max(L(u) : u E S ) which has a unique solution (see, page 234 of

Bazaraa and Shetty, 1979).,
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Figure 4: A 'Strong' Solution to a Variational Inequality Problem

The rate of convergence of CPVI depends in part on the choice for xk in

Step 2. The choice requiring the least effort is due to Zuhovickii et al. (1979);

they set xk = uk. Under this choice

F(xk)(x .k ) = F(,,k)(1,k - Ik) = 0.

Nguyen and Dupuis (1984) proposed another choice of xk1. They let xk be the

solution to the VI problem over the line segment joining xk- 1 and uk, denoted

as [ xk- 1 , uk ]. Thus, x k Eixk -E , u and satisfies

F( xk)(y. x k) 2!0 V y E4X kli itk ~

Since uk E J[ xk- 1 , ,
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F(x' .)(k . x) 2! 0 or F(xk)(xk _ U) < 0.

So, Nguyen and Dupuis choice of xk satisfies the requirement in Step 2.

Figure 5 illustrates this choice of xk. In Figure 5(a), if F(xk) is a gradient of a

function, say, f(x), then Xk would be the unconstrained minimizer of a one-

dimensional optimization problem. In Figure 5(b), the 'unconstrained

minimizer' is to the left of uk. So, xk must be set equal to uk. However, this

suggests a generalization of the choice for xk by Nguyen & Dupuis.

Let

ap= max ja:a > 0 and x' 1 + cz(Ik .x k.I) E S}

and set

U =xk-1 +aup(Uk . xk'l).

Then, choose xk E t[ VuP, xk-1 ] such that

F(xk)(y xk) _ 0 Vy E[oVu,x -1.

Since lk E t[ vuP, xk-1 ],

F(xk)(uk . k)>_ 0 or F(xk)(xk - I k)  0.,

Thus, the new choice of xk also satisfies the requirement in Step 2. Figure 6

illustrates the new choice of xk,
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F(xk

xU k xkl

(a)

F(x k

V~ k ~k Xk-1

(b)

Figure 5.. Nguyen & Dupuis's Choice for xk
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F(x)k F(u k)

k Ikkvup x itx -

Figure 6. The New Choice for Xk

36



5. CONCLUSION

This paper addresses the cutting plane algorithm which has been pro-

posed for problems derived from two different but related areas in operations

research: optimization and equilibrium problems. In optimization, the cut-

ting plane algorithm is often used to solve the master problem from Benders

decomposition or Lagrangian dual of a nonlinear program., For the equi-

librium problem, the algorithm has been applied only to finite dimensional

variational inequalities. To unify ideas in the two areas, this paper views

problems in both areas as maximin problems. This establishes a common

framework for analyzing and examining convergence properties of various

schemes for enhancing the cutting plane algorithm. In particular, the analysis

also leads to several interesting new results. First is the relationship between

adding a line search step and generating 'deep' or pareto optimal cuts.,

Second are the concept of generating nontangential cuts and the justification

for solving the subproblem approximately. The last are an alternate proof of

convergence and a generalization of an existing method for generating cuts in

the case of variational inequalities,

It has been well demonstrated that the acceleration strategies discussed

herein actually reduced the computing time. Hearn and Lawphongpanich

(1989a & b) compared the CP algorithm against CPLS on 25 Linear and 25

quadratic integer programming problems. The number of variables in these

problem ranges from 20 to 100 with number of constraints ranges from 10 to

50. They concluded that the addition of line search saves cpu time on the

average 40% for linear problems and 70% for quadratic. The rather large

saving for the quadratic case is due to the fact that the line search only require
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two dual function evaluations., In Hearn and Lawphongpanich (1990), the

same comparison was made on a traffic assignment problem from Goffin

(1987) with 22 arcs, 14 nodes, and 23 origin-destination pairs. The saving due

to line search is approximately 50%.

As for variational inequalities, its subproblem is generally a nonlinear

program. Thus, by entirely eliminating the subproblem from the steps of the

CP algorithm, CPVI can only accelerate the basic algorithm. To demonstrate

that CPVI is competitive with existing methods for variational inequalities,
k

Nguyen and Dupuis (1984) compared CPVI with x = v* against the well-

regarded Frank-Wolfe algorithm (see, Frank and Wolfe, 1956 and LeBlanc et
k

al., 1975) for the traffic assignment problem, They showed that CPVI with x k

v* compares favorably with Frank-Wolfe on problems with 19 arcs, 11 nodes

and 4 origin-destination pairs to problems with 2836 arcs, 1052 nodes and 147
k=

origin-destination pairs, Also shown is the fact that CPVI with x = v* is
k k' k

superior to the one with x = k. This is not unexpected since setting x = v* is
k k-I

tantamount to performing a line search along the direction u - x (see

Hammond, 1984).
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